
Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Prevodjenje programskih jezika – beleške sa
predavanja

Jezici i gramatike

Milan Banković

*Matematički fakultet,
Univerzitet u Beogradu

Jesenji semestar 2025/26.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Azbuke, reči i jezici

Pregled

1 Azbuke, reči i jezici

2 Regularni jezici i regularni izrazi

3 Kontekstno-slobodni jezici

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Azbuke, reči i jezici

Azbuka i reč

Azbuka i reč

Definicija 1

Azbuka Σ je konačan, neprazan skup elemenata koje nazivamo slovima
ili simbolima azbuke. Reč w = a1a2 . . . an nad Σ je bilo koji konačan
niz simbola ai ∈ Σ. Specijalno, postoji i prazna reč koju obično
označavamo sa ε. Skup svih reči nad Σ označavamo sa Σ∗. Broj
simbola od kojih se sastoji reč w nazivamo dužinom reči w i
označavamo sa |w |. Specijalno, prazna reč ε je dužine nula: |ε| = 0.

Primedba

Primetimo da reči nad azbukom Σ ima beskonačno mnogo, iako su sve
reči konačne dužine. Ovo je zato što konačnih dužina ima beskonačno
mnogo (skup prirodnih brojeva N0)

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Azbuke, reči i jezici

Azbuka i reč

Azbuka i reč

Primer

Neka je Σ = {0, 1}. Reči nad ovom azbukom su sve konačne niske nula i jedinica (npr. 0,
010, 11110, i sl.) Ovu azbuku nazivaćemo i binarnom azbukom, jer se u pomoću nje
mogu zapisivati binarni brojevi. Dužine navedenih reči su: |0| = 1, |010| = 3, |11110| = 5.

Primer

Azbuka koju ćemo često koristiti u našim primerima je Σ = {a, b}. Primeri reči nad ovom
azbukom su baba, abba, abab, aaaa, bbaaaabb ...

Primer

Većina modernih programskih jezika kao azbuku koriste ASCII skup karaktera. Ova
azbuka ima 128 simbola. Svi programi su zapravo ASCII tekstualni fajlovi, te se mogu
razumeti kao nizovi ASCII karaktera, tj. kao reči nad ovom azbukom.

Primer

S obzirom da sintaksni analizator na ulazu ima niz tokena, možemo razumeti da su nizovi
tokena zapravo reči nad azbukom čiji su simboli tokeni.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Azbuke, reči i jezici

Azbuka i reč

Dopisivanje reči

Definicija 2

Neka su date dve reči u = a1a2 . . . an i v = b1b2 . . . bm nad azbukom Σ. Tada definǐsemo:
u · v := a1a2 . . . anb1b2 . . . bm. Operaciju · : Σ∗ × Σ∗ → Σ∗ nazivamo operacijom
dopisivanja (ili konkatenacije) reči. Specijalno, definǐsemo: u · ε = ε · u = u za svaku reč
u ∈ Σ∗.

Primedba

Može se dokazati da važi: |u · v | = |u|+ |v |.

Primedba

Lako se vidi da je (Σ∗, ·) nekomutativni monoid. Operacija · je asocijativna, ali ne i
komutativna. Jedini invertibilni element ovog monoida je njegov neutralni element ε.

Primedba

Umesto u · v često pǐsemo samo uv .

Primer

Dopisivanjem reči baba i abba dobijamo reč babaabba.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Azbuke, reči i jezici

Azbuka i reč

Stepen reči

Definicija 3

Operacija n-tog stepena reči wn definǐse se rekurzivno na sledeći
način:

w0 = ε
wn+1 = wn · w

Primedbe

n-ti stepen reči nastaje dopisivanjem reči same na sebe n puta
Operacija stepena ima uobičajene osobine: wn · wm = wn+m,
(wn)m = wn·m

Primer

(ab)3 = ababab

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Azbuke, reči i jezici

Azbuka i reč

Jezik

Definicija 4

Jezik nad azbukom Σ je bilo koji podskup od Σ∗.

Primedba

Jezik može biti konačan ili prebrojivo beskonačan.

Primer

Neka je data azbuka Σ = {a, b}. Neki primeri jezika nad ovom azbukom su:

Skup L1 = {ε, a, b, aa, bb, ab, ba} je jezik svih reči dužine najvǐse dva. Ovaj
jezik je konačan.
Skup L2 = {a, aa, aaa, aaaa, . . . } je jezik svih reči koje se sastoje samo iz slova
a. Ovaj jezik je beskonačan.
Neka je L3 skup svih reči nad Σ takvih da sadrže jednak broj pojavljivanja slova
a i b. Ovo je jedan (beskonačan) jezik nad Σ.
Neka je L4 skup svih reči nad Σ takvih da sadrže paran broj pojavljivanja slova
a. Ovaj skup je jedan jezik nad Σ.
...

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Azbuke, reči i jezici

Azbuka i reč

Jezik

Važna primedba

Jezik ∅ = {} je prazan jezik. Ovaj jezik postoji nad svakom
azbukom. Takodje, nad svakom azbukom postoji i jezik Lε = {ε}.
Ova dva jezika nisu jednaka (ovaj drugi ima jednu reč u sebi, dok
je prvi prazan).

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Azbuke, reči i jezici

Azbuka i reč

Operacije nad jezicima

Primedba

Kako su jezici skupovi, nad njima su definisane sve uobičajene skupovne operacije:

L1 ∪ L2 = {w | w ∈ L1 ∨ w ∈ L2}
L1 ∩ L2 = {w | w ∈ L1 ∧ w ∈ L2}
L1 \ L2 = {w | w ∈ L1 ∧ w /∈ L2}
CL = Σ∗ \ L

Dodatno, definǐsemo i neke specifične operacije za jezike:

Definicija 5

Dopisivanje jezika: L1 · L2 = {u · v | u ∈ L1 ∧ v ∈ L2}
Stepen jezika: L0 = Lε = {ε}, Ln+1 = Ln · L
Klinijevo zatvorenje (iteracija): L∗ =

⋃∞
k=0 L

k = L0 ∪ L1 ∪ L2 ∪ . . .
Pozitivno zatvorenje: L+ =

⋃∞
k=1 L

k = L1 ∪ L2 ∪ . . .
Opcioni operator: L? = L ∪ {ε}

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Azbuke, reči i jezici

Azbuka i reč

Operacije nad jezicima

Osobine operacija nad jezicima

Važi L∗ = L+ ∪ {ε}, ali ne mora da važi L+ = L∗ \ {ε}
Ako ε ∈ L, tada ε ∈ L+, dok ε /∈ L∗ \ {ε}

Ukoliko jezik L sadrži bar jednu reč različitu od prazne reči, jezici L∗ i L+ su
beskonačni

Ako je w ∈ L i w ̸= ε, tada su w1,w2,w3, . . . različite reči koje sve pripadaju
ovim jezicima

Važi L? = L akko ε ∈ L
Operacija dopisivanja jezika je asocijativna, ali nije komutativna

Ove osobine slede iz osobina operacije dopisivanja za reči

Neutralni element za operaciju dopisivanja je Lε = {ε} (Lϵ · L = L · Lϵ = L)

Lϵ · L = {ε · u | u ∈ L} = {u | u ∈ L} = L

Važi L ·∅ = ∅
Ovo je zato što je ∅ prazan skup

Važi L · (L1 ∪ L2) = L · L1 ∪ L · L2
x ∈ L · (L1 ∪ L2) ⇔ ∃uv . x = uv ∧ u ∈ L ∧ v ∈ L1 ∪ L2 ⇔ ∃uv . x = uv ∧ u ∈
L ∧ (v ∈ L1 ∨ v ∈ L2) ⇔ ∃uv .(x = uv ∧ u ∈ L ∧ v ∈ L1) ∨ (x = uv ∧ u ∈ L ∧ v ∈
L2) ⇔ (∃uv . x = uv ∧ u ∈ L ∧ v ∈ L1) ∨ (∃uv . x = uv ∧ u ∈ L ∧ v ∈ L2) ⇔ x ∈
L · L1 ∨ x ∈ L · L2 ⇔ x ∈ L · L1 ∪ L · L2

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Azbuke, reči i jezici

Azbuka i reč

Operacije nad jezicima

Da li važi ova osobina?

L · (L1 ∩ L2) = L · L1 ∩ L · L2

U jednom smeru važi

x ∈ L · (L1 ∩ L2) ⇔ ∃uv . x = uv ∧ u ∈ L ∧ v ∈ L1 ∩ L2 ⇔ ∃uv . x = uv ∧ u ∈
L ∧ v ∈ L1 ∧ v ∈ L2 ⇔ ∃uv .(x = uv ∧ u ∈ L ∧ v ∈ L1) ∧ (x = uv ∧ u ∈ L ∧ v ∈
L2) ⇒ (∃uv . x = uv ∧ u ∈ L ∧ v ∈ L1) ∧ (∃uv . x = uv ∧ u ∈ L ∧ v ∈ L2) ⇔ x ∈
L · L1 ∧ x ∈ L · L2 ⇔ x ∈ L · L1 ∩ L · L2

U drugom smeru ne važi!!

Ovo je zato što u logici prvog reda implikacija
∃z . p(z) ∧ q(z) ⇒ (∃z . p(z)) ∧ (∃z . q(z)) važi samo u jednom smeru.

Kontraprimer

L = {a, aa}, L1 = {a}, L2 = {aa}. Jezici L1 i L2 su disjunktni, pa je L · (L1 ∩ L2)
prazan. Sa druge strane, reč aaa pripada i jeziku L · L1 i jeziku L · L2, pa presek ovih
jezika nije prazan.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Pregled

1 Azbuke, reči i jezici

2 Regularni jezici i regularni izrazi

3 Kontekstno-slobodni jezici

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Regularni jezici

Regularni jezici

Definicija 6

Klasa regularnih jezika nad azbukom Σ (u oznaci R(Σ)) je najmanji skup
jezika nad Σ koji zadovoljava sledeće osobine:

Prazan jezik ∅ je regularan
Jezik Lε = {ε} je regularan
Za svaki simbol a ∈ Σ, jezik {a} je regularan
Ako su L1 i L2 regularni, tada su i jezici L1 ∪ L2 i L1 · L2 regularni
Ako je L regularan, tada je i jezik L∗ regularan

Primedba

Regularni jezici su oni i samo oni jezici koji se mogu dobiti polazeći od
jezika ∅, Lε i {a} (a ∈ Σ), konačnom primenom operacija unije,
nadovezivanja i Klinijevog zatvorenja.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Regularni jezici

Primeri

Primer

Neka je w ∈ Σ∗ proizvoljna reč nad Σ. Tada je jezik {w} regularan.
Zaista, ako je w = a1a2 . . . an, tada je {w} = {a1} · {a2} · . . . · {an}, pa je
regularan.
Svaki konačan jezik L = {w1,w2, . . . ,wn} je regularan. Zaista, on se može
predstaviti kao {w1} ∪ {w2} ∪ . . . ∪ {wn}, pa je regularan.
Postoje i beskonačni regularni jezici: oni se dobijaju primenom operacije
Klinijevog zatvorenja
Jezik {an | n ≥ 0} = {ε, a, aa, aaa, . . . } je regularan, jer se može
predstaviti kao {a}∗
Jezik {anbm |n,m ≥ 0} je regularan, jer se može predstaviti kao {a}∗{b}∗
Jezik Σ je regularan, jer se sastoji iz svih jednoslovnih reči, pa je konačan
Jezik Σ∗ (skup svih reči nad Σ) je regularan, jer se dobija primenom
Klinijevog zatvorenja na jezik Σ

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Regularni jezici

Regularni jezici i operacije nad jezicima

U odnosu na koje operacije je klasa regularnih izraza zatvorena?

Iz same definicije sledi da je klasa regularnih jezika zatvorena za uniju
Može se pokazati da je klasa regularnih jezika zatvorena i za ostale
skupovne operacije:

Presek dva regularna jezika je regularan
Komplement regularnog jezika je regularan
Razlika dva regularna jezika je regularan

Dokaz ove činjenice nije trivijalan: ostavljamo ga za kasnije!!
Takodje, iz definicije sledi da je klasa regularnih jezika zatvorena za
operaciju dopisivanja jezika:

Posledica: ako je L regularan jezik, tada je i Li regularan jezik za svako
i ∈ N0

Slično, iz definicije sledi i da su jezici L? = L ∪ {ε} i L+ = L · L∗ takodje
regularni, ako je L regularan

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Regularni izrazi

Regularni izrazi

Šta su regularni izrazi?

Regularni izrazi predstavljaju notaciju za kompaktno opisivanje regularnih jezika. U
osnovi, iz skupovnog opisa regularnih izraza izbacujemo vitičaste zagrade, a
operator unije ∪ zamenjujemo operatorom | (,,ili” operator).

Definicija 7

Svakom regularnom jeziku pridružujemo regularni izraz na sledeći način:

Regularnom jeziku ∅ pridružujemo regularni izraz ∅
Regularnom jeziku {ε} pridružujemo regularni izraz ε
Za svako a ∈ Σ, regularnom jeziku {a} pridružujemo regularni izraz a
Ako su regularnim jezicima L1 i L2 redom pridruženi regularni izrazi r1 i r2, tada
jezicima L1 · L2 i L1 ∪ L2 pridružujemo regularne izraze r1r2 i r1|r2 respektivno
Ako je regularnom jeziku L pridružen regularni izraz r , tada regularnom jeziku
L∗ pridružujemo regularni izraz r∗

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Regularni izrazi

Primeri

Primer

Za w ∈ Σ∗, jeziku {w} pridružujemo regularni izraz w

Jeziku {w1,w2, . . . ,wn} pridružujemo regularni izraz
w1|w2| . . . |wn

Jeziku {an | n ≥ 0} pridružujemo regularni izraz a∗

Jeziku {anbm | n,m ≥ 0} pridružujemo regularni izraz a∗b∗

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Regularni izrazi

Regularni izrazi – napomene

Ekvivalentnost izraza

Dva regularna izraza su ekvivalentna ako definǐsu isti regularni jezik
Jasno je, s obzirom na definiciju regularnih operatora i osobina odgovarajućih
operacija nad jezicima, da će npr. izraz p|q biti ekvivalentan izrazu q|p, kao i
da će izraz (pq)r biti ekvivalentan izrazu p(qr)
Medjutim, postoje i regularni izrazi koji uopšte nisu ,,slični”, a ekvivalentni su
Pitanje ekvivalentnosti regularnih izraza nije uopšte trivijalno; odgovor na ovo
pitanje daćemo kasnije
Posledično: regularni izraz koji predstavlja neki regularni jezik L i opštem
slučaju nije jedinstven

Prioritet operatora

Prilikom zapisivanja regularnih izraza, najveći prioritet ima operator zatvorenja,
zatim operator dopisivanja, i na kraju ,,ili” operator
Prioritet se može promeniti zagradama
Na primer, izraz a|bc∗ je ekvivalentan izrazu a|(b(c∗))

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Regularni izrazi

Primeri

Primer

Neka je Σ = {0, 1}. Jezik svih reči nad ovom azbukom koje
sadrže dve uzastopne nule je regularan i može se opisati
izrazom (0|1)∗00(0|1)∗

Jezik svih reči nad azbukom Σ = {0, 1} koje sadrže paran broj
nula je takodje regularan i može se opisati izrazom
(1∗01∗0)∗1∗

Neka je Σ skup svih ASCII simbola. Jezik koji sadrži sve
identifikatore programskog jezika C se može opisati izrazom
(a|b| . . . |z |A|B| . . . |Z |)(a|b| . . . |z |A|B| . . . |Z | |0|1| . . . |9)∗

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Prošireni regularni izrazi

Prošireni regularni izrazi

Klase simbola

Neka su a1, a2, . . . , an ∈ Σ. Izraz [a1a2 . . . an] predstavlja jezik {a1, a2 . . . , an}. Slično,
izraz [ˆa1a2 . . . an] predstavlja jezik Σ \ {a1, a2, . . . , an}.

Primer

Na primer, izraz [abc] označava isto što i izraz a|b|c.

Intervali

Pretpostavimo da je azbuka Σ ureden skup, tj. da je definisana relacija potpunog poretka
≺ nad azbukom Σ. Pretpostavimo da su a i b simboli iz Σ takvi da je a ≺ b. Tada [a-b]

označava jezik {c | a ⪯ c ⪯ b}. Slično, [^a-b] označava jezik Σ \ {c | a ⪯ c ⪯ b}.

Primer

Klase i intervali se mogu i kombinovati. Na primer, izraz [abc0-9] predstavlja isto što i
izraz a|b|c |0|1|2|3|4|5|6|7|8|9.

Napomena

Klase i intervali predstavljaju samo kraći zapis regularnih izraza, tj. ne utiču na
izražajnost regularnih izraza.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Prošireni regularni izrazi

Prošireni regularni izrazi

Još neka proširenja

Ako regularni izraz r označava regularni jezik L, tada izrazi r+ i r? označavaju
redom jezike L+ i L?

Ako regularni izraz r označava regularni jezik L, tada izrazi r{m}, r{−m}, r{m−}

i r{m−n} označavaju, respektivno, jezike Lm,
⋃m

i=0 L
i ,
⋃∞

i=m Li i
⋃n

i=m Li

Primer

Izraz a(ab){1−3} opisuje jezik {aab, aabab, aababab}, a izraz a?ba+ opisuje jezik
{aba, abaa, abaaa, . . . , ba, baa, baaa, . . . }.

Napomena

Znamo od ranije da su jezici Lm, L+ i L? regularni ako je L regularan. Slično jezici⋃m
i=0 L

i i
⋃n

i=m Li su regularni kao konačne unije regularnih jezika. Najzad, jezik⋃∞
i=m Li se može predstaviti kao Lm · L∗, pa je regularan kao proizvod dva regularna

jezika. Odavde sledi da se navedenim proširenjima regularnih izraza ne proširuje
klasa jezika koji se mogu predstaviti, već se samo pojednostavljuje zapis.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Prošireni regularni izrazi

Regularni izrazi i operacije nad jezicima

Šta sa ostalim skupovnim operacijama?

Ranije je konstatovano da je klasa regularnih jezika zatvorena
za operacije preseka, razlike i komplementa skupa

Ipak, ne postoje operatori kojima se mogu direktno opisati
ovakvi regularni jezici (kao što je slučaj sa unijom)

Otuda, nije tako očigledno koji bi regularni izraz odgovarao
npr. preseku dva regularna jezika zadata nekim regularnim
izrazima r1 i r2

Ipak, znamo da takav regularni izraz postoji

Sistematski postupak za odredivanje regularnih izraza u
takvim slučajevima pokazaćemo kasnije

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Prošireni regularni izrazi

Regularni izrazi i operacije nad jezicima

Primer

Znamo da je jezik svih binarnih niski koje sadže dve uzastopne nule
predstavljen npr. izrazom (0|1)∗00(0|1)∗. Komplement ovog jezika
je takode regularan, ali nije očigledno koji bi mu izraz odgovarao.
Možemo primeniti ad-hoc pristup i konstruisati izraz u zavisnosti
od konkretnog slučaja: ovde tražimo jezik svih reči koje ne sadrže
dve uzastopne nule, a jedan izraz koji opisuje ovaj jezik bi mogao
da bude: 1∗(01+)∗0?.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Regularni izrazi u leksičkoj analizi

Regularni izrazi u leksičkoj analizi

Koji su jezici regularni u praksi?

U terminima regularnih jezika mogu se opisati različiti jezici koji se sreću u
praksi:

Celi i realni brojevi
Datumi
Različiti formati za lozinke, korisnička imena naloga i sl.
Razni obrasci u tekstu
...

Zbog toga su regularni izrazi veoma korisni u pretraživanju i obradi teksta:

Konzolni alat grep je primer alata za pretragu teksta zasnovan na regularnim
izrazima
Većina programskih jezika imaju ili ugradjenu podřsku za regularne izraze
(npr. Perl) ili ih podržavaju kroz odgovarajuće biblioteke

Leksička analiza

Svaka klasa leksema (kojoj odgovara jedan token) predstavlja jedan jezik
Ovi jezici su po pravilu regularni i mogu se opisati regularnim izrazima
Otuda je proučavanje regularnih jezika veoma značajno sa stanovǐsta
konstrukcije leksičkih analizatora

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Regularni izrazi u leksičkoj analizi

Primeri

Primer

Jezik identifikatora u C-u se može kraće opisati regularnim
izrazom [a− zA− Z][a− zA− Z 0− 9]∗.

Jezik celobrojnih (dekadnih) konstanti u C-u se može opisati
regularnim izrazom [1− 9][0− 9]∗[uUlL]{−2}

Jezik označenih realnih konstanti se može opisati regularnim
izrazom ([0− 9]|[1− 9][0− 9]∗).[0− 9]+

NAPOMENA: poslednja dva izraza predstavljaju samo
aproksimacije stvarnih jezika i navedeni su kao ilustracija. Student
može za vežbu da pokuša da precizno definǐse izraze koji opisuju
odgovarajuće leksičke kategorije u jeziku C.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Ograničenja regularnih jezika

Ograničenja regularnih jezika

Sledeća lema se u literaturi obično zove lema o razrastanju (engl. pumping
lemma):

Lema 1

Neka je L regularan jezik. Tada postoji neko p ∈ N (koje zavisi samo od jezika
L), takvo da za svaku reč w ∈ L za koju je |w | ≥ p važi da se w može
predstaviti u obliku w = xzy, gde je |z | ≥ 1, |xz | ≤ p i xzky ∈ L za svako
k ∈ N0.

Ovu lemu dokazaćemo kasnije.

Posledica

Da bismo dokazali da jezik L nije regularan, dovoljno je da pokažemo da
možemo pronaći proizvoljno dugu reč w ∈ L takvu da je nije moguće
predstaviti u opisanom obliku.

Lema o razrastanju se obično koristi da se dokaže da jezik nije regularan.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Ograničenja regularnih jezika

Ograničenja regularnih jezika

Primer

Jezik L = {anbn | n ≥ 0} nije regularan. Zaista, pretpostavimo suprotno,
da jeste regularan. Tada prema prethodnoj lemi postoji neko p takvo da
zadovoljava uslove iz leme. Uzmimo reč apbp. Ova reč pripada L i duža je
od p. Otuda se ova reč može predstaviti u obliku apbp = xzy, takvo da je
|z | ≥ 1, |xz | ≤ p i reč xzky ∈ L za svako k ∈ N0. Medjutim, iz |xz | ≤ p
sledi da je z = ai za neko i ≥ 1, pa je zk = aik . Otuda je reč
xzky = ap−i+ikbp. Lako se vidi da ova reč ne pripada jeziku L za bilo koje
k ̸= 1, jer broj simbola a neće biti jednak broju simbola b. Kontradikcija.

VAŽNA NAPOMENA

U jeziku iz prethodnog primera zahtevali smo da reči sadrže jednak broj
a-ova i b-ova (isto n je u oba stepena). To nije isto kao da smo imali jezik
L′ = {anbm | m, n ≥ 0}, gde broj a-ova i b-ova u reči može biti različit.
Jezik L′ jeste regularan i može se opisati izrazom a∗b∗.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Regularni jezici i regularni izrazi

Ograničenja regularnih jezika

Ograničenja regularnih jezika

Posledice

Jezik L = {anbn | n ≥ 0} je apstraktna varijanta jezika ,,uparenih zagrada”
Ovakve konstrukcije se često javljaju u sintaksi programskih jezika:

Svaka otvorena zagrada (u izrazima mora da ima odgovarajuću zatvorenu
zagradu)
Svaki početak bloka { u C-u mora da ima odgovarajući kraj bloka }
Svaki početak bloka begin u Pascal-u mora da ima odgovarajući kraj bloka
end
Svaka otvorena zagrada [za indeksiranje nizova mora da ima odgovarajuću
zatvorenu zagradu]
Svaki otvoreni tag u HTML-u mora da ima odgovarajući zatvoreni tag
...

Odavde sledi da glavne sintaksne kategorije koje postoje u svim
programskim jezicima – izrazi i naredbe – ne mogu da se opǐsu regularnim
izrazima
Dakle, regularni izrazi će nam biti korisni za leksičku, ali ne i za sintaksnu
analizu

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Pregled

1 Azbuke, reči i jezici

2 Regularni jezici i regularni izrazi

3 Kontekstno-slobodni jezici

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Gramatike i jezici

Kontekstno slobodna gramatika

Definicija 8

Kontekstno slobodna gramatika (KSG) je uredena četvorka oblika
G = (Σ,N,S ,P), gde je:

Σ – azbuka nad kojom se gradi gramatika (skup terminala)

N – konačni skup nezavřsnih simbola (ili neterminala)

S ∈ N – početni neterminal (ili aksioma)

P ⊆ N × (N ∪ Σ)∗ – konačni skup pravila izvodjenja

Pravilo (A, α) ∈ P zapisujemo kao A −→ α i čitamo ,,A izvodi α”

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Gramatike i jezici

Kontekstno slobodna gramatika

Primer

Neka je G = (Σ,N,S ,P), gde je:

Σ = {a, b}
N = {S} (tj. S je jedini neterminal)
P = {S −→ aSb,S −→ ε}

Gramatike ćemo često zapisivati neformalno, zadavanjem samo skupa pravila. Na primer, za
gornju gramatiku, mogli smo napisati samo:

S −→ aSb
S −→ ε

Po konvenciji, neterminale ćemo označavati velikim slovima, dok ćemo terminale označavati
malim slovima. Otuda, nije neophodno eksplicitno navoditi skupove Σ i N. Takodje, po
konvenciji će početni neterminal biti onaj za koji se prvo navode pravila, te ni njega nije
neophodno eksplicitno naglašavati.
Gornju gramatiku ćemo još kraće zapisivati i ovako:

S −→ aSb
| ε

Uopšte, pravila koja odgovaraju istom neterminalu ćemo grupisati korǐsćenjem ,,ili” operatora.
Napominjemo da je ovo samo kraći zapis, a ne bilo kakva suštinska izmena u odnosu na
prethodnu definiciju gramatike.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Gramatike i jezici

Kontekstno slobodni jezici

Definicija 9

Relacija izvodjenja indukovana gramatikom G = (Σ,N, S ,P) je binarna
relacija =⇒ nad skupom (Σ ∪ N)∗ takva da u =⇒ v akko je u = αXβ, a
v = αγβ, za neke α, β, X i γ, pri čemu je X −→ γ ∈ P.
Izvodenje u gramatici G je bilo koji lanac α1 =⇒ α2 =⇒ . . . =⇒ αm.
Tranzitivno zatvorenje relacije =⇒ označavamo sa =⇒+, a tranzitivno i
refleksivno zatvorenje sa =⇒∗.
Rečenična forma gramatike G = (Σ,N,S ,P) je bilo koja reč α ∈ (Σ∪N)∗

takva da S =⇒∗ α, tj. takva da postoji izvodenje S =⇒ . . . =⇒ α u
gramatici G .
Jezik generisan gramatikom G (u oznaci L(G)) je skup svih zavřsnih
rečeničnih formi gramatike G, tj. skup svih reči w ∈ Σ∗ takvih da
S =⇒∗ w, odnosno takvih da postoji izvodenje S =⇒ . . . =⇒ w u
gramatici G .
Za jezik L nad azbukom Σ kažemo da je kontekstno slobodan ako postoji
kontekstno slobodna gramatika koja ga generǐse.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Gramatike i jezici

Kontekstno slobodni jezici

Primer

Vratimo se na gramatiku:

S −→ aSb
| ε

Primer jednog izvodenja u ovoj gramatici je:

S =⇒ aSb =⇒ aaSbb =⇒ aaaSbbb =⇒ aaabbb

Sve reči u ovom izvodenju predstavljaju rečenične forme gramatike. Reč
aaabbb predstavlja zavřsnu rečeničnu formu, jer se sastoji samo iz terminala.
Ova reč pripada jeziku ove gramatike.
Jezik generisan ovom gramatikom je L(G) = {anbn | n ≥ 0}.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Gramatike i jezici

Regularni i kontekstno slobodni jezici

Primedba

Gramatika iz prethodnog primera zapravo generǐse jezik
L(G) = {anbn | n ≥ 0}.
Za ovaj jezik smo ranije dokazali da nije regularan.

Ovo znači da kontekstno slobodni jezici ne moraju biti
regularni.

Specijalno, ,,uparivanje zagrada” nije problem za kontekstno
slobodne jezike.

Obratno pitanje: da li regularni jezici moraju biti kontekstno
slobodni?

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Gramatike i jezici

Regularni i kontekstno slobodni jezici

Teorema 1

Svaki regularan jezik je kontekstno slobodan.

Dokaz

Potrebno je dokazati da se svaki regularan jezik može generisati gramatikom:

Jezik ∅ se može generisati bilo kojom gramatikom sa praznim skupom pravila
Jezik {ε} se može generisati gramatikom S −→ ε
Jezik {a} za proizvoljno a ∈ Σ se može generisati gramatikom S −→ a
Ako su jezici L1 i L2 generisani redom gramatikama G1 = (Σ,N1,S1,P1) i
G2 = (Σ,N2, S2,P2), tada:

Jezik L1 ∪ L2 će biti generisan gramatikom
G = (Σ,N1 ∪ N2 ∪ {S},S ,P1 ∪ P2 ∪ {S −→ S1,S −→ S2})
Jezik L1 · L2 će biti generisan gramatikom
G = (Σ,N1 ∪ N2 ∪ {S},S ,P1 ∪ P2 ∪ {S −→ S1S2})

Ako je jezik L generisan gramatikom G = (Σ,N, S ,P), tada će jezik L∗ biti
generisan gramatikom G ′ = (Σ,N ∪ {S ′}, S ′,P ∪ {S ′ −→ SS ′,S ′ −→ ε})

Odavde skup svih kontekstno slobodnih jezika mora sadržati sve regularne jezike.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Gramatike i jezici

Rekurzija u gramatikama

Definicija 10

Za pravilo gramatike kažemo da je rekurzivno ako je oblika A −→ αAβ
(α, β ∈ (Σ ∪ N)∗), tj. ako se simbol sa leve strane pojavljuje i u desnoj
strani pravila. Specijalno, pravilo je levo rekurzivno ako je oblika
A −→ Aα, a desno rekurzivno ako je oblika A −→ αA.

Primer

U gramatici S −→ aSb | ε, pravilo S −→ aSb je rekurzivno pravilo. Ovo
pravilo nije ni levo ni desno rekurzivno, već je rekurzivno po sredini.

Primer

U gramatici S −→ SAB, A −→ aA | B, B −→ ab | Ba, pravila
S −→ SAB i B −→ Ba su levo rekurzivna, dok je pravilo A −→ aA
desno rekurzivno.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Gramatike i jezici

Rekurzija u gramatikama

Primedba

Rekurzija može biti i posredna – na primer: S −→ aAb | ε,
A −→ bSa | a
Može se pokazati da gramatika u kojoj nema rekurzije (ni
posredne ni neposredne) može generisati samo konačne jezike

Otuda, gramatike koje ne sadrže rekurziju nisu naročito
interesantne

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Stablo izvodenja

Izvodenje nalevo i nadesno

Primer

Neka je data gramatika G:
S −→ (L)

| a
L −→ S L

| S

Reč (a (a a)) pripada jeziku L(G). Jedno izvodenje ove reči bi moglo da izgleda ovako:
S =⇒ (L) =⇒ (S L) =⇒ (a L) =⇒ (a S) =⇒ (a (L)) =⇒ (a (S L)) =⇒ (a (a L)) =⇒
(a (a S)) =⇒ (a (a a))
Ovakvo izvodenje se naziva i izvodenje nalevo (ili najlevlje izvodenje), jer se u svakom
koraku pravilo primenjuje na najlevlji neterminal. Analogno, postoji i izvodenje nadesno
(ili najdešnje izvodenje): S =⇒ (L) =⇒ (S L) =⇒ (S S) =⇒ (S (L)) =⇒ (S (S L)) =⇒
(S (S S)) =⇒ (S (S a)) =⇒ (S (a a)) =⇒ (a (a a))

Napomene

Za svaku reč jezika L(G) postoji bar jedno najlevlje i jedno najdešnje izvodenje
Mogu postojati izvodenja koja nisu ni najlevlja ni najdešnja
Pitanje: da li je najlevlje (najdešnje) izvodenje proizvoljne reči jezika jedinstveno?

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Stablo izvodenja

Stablo izvodenja

Definicija 11

Neka je dato izvodenje S =⇒ α1 =⇒ α2 =⇒ . . . =⇒ w reči w ∈ Σ∗ jezika
L(G). Stablo izvodenja koje odgovara datom izvodenju se formira na sledeći
način:

U korenu stabla se nalazi početni simbol S
Ako u nekom koraku imamo list stabla u kome se nalazi neterminal A, pri
čemu je na taj neterminal A u datom izvodenju primenjeno pravilo
A −→ X1X2 . . .Xk , tada se u stablo kao potomci ovog čvora dodaju
čvorovi u kojima se nalaze simboli X1,X2, . . . ,Xk

Postupak se zavřsava kada u listovima imamo samo terminale

Primedba

Obilaskom listova stabla izvodenja sa leva na desno dobija se reč w
U unutrašnjim čvorovima stabla nalaze se neterminali koji učestvuju u
izvodenju

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Stablo izvodenja

Stablo izvodenja

Primer

Najlevljem izvodenju iz prethodnog primera odgovara sledeće stablo izvodenja:

S

_____/ | _____

/ | \

(L)

___/ ____

/ \

S L

| |

a S

____/ | ____

/ | \

(L)

___/ ___

/ \

S L

| |

a S

|

a

Za vežbu: uveriti se da najdešnjem izvodenju iz prethodnog primera odgovara to isto
stablo izvodenja.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Posmatrajmo sledeću gramatiku:

E −→ E + E
| a

kao i reč a+ a+ a. Ova reč pripada jeziku gramatike, jer npr. imamo izvodenje:
E =⇒ E + E =⇒ a+ E =⇒ a+ E + E =⇒ a+ a+ E =⇒ a+ a+ a. Ovo izvodenje je
najlevlje i odgovara mu sledeće stablo izvodenja:

E

_/ | _

/ | \

E + E

| _/ | _

| / | \

a E + E

| |

a a

Lako se vidi da najdešnjem izvodenju:
E =⇒ E + E =⇒ E + E + E︸ ︷︷ ︸ =⇒ E + E + a =⇒ E + a+ a =⇒ a+ a+ a odgovara isto

stablo izvodenja.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Posmatrajmo ponovo gramatiku i reč iz prethodnog primera. Izvodenje:
E =⇒ E + E =⇒ E + E︸ ︷︷ ︸+E =⇒ a+ E + E =⇒ a+ a+ E =⇒ a+ a+ a je takode jedno

najlevlje izvodenje reči a+ a+ a. Ovom izvodenju odgovara stablo:

E

_/ | _

/ | \

E + E

/ | _ |

/ | \ |

E + E a

| |

a a

Kao i ranije, postoji i najdešnje izvodenje koje odgovara istom ovom stablu:
E =⇒ E + E =⇒ E + a =⇒ E + E + a =⇒ E + a+ a =⇒ a+ a+ a.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Definicija 12

Za dva izvodenja iste reči jezika L(G) kažemo da su ekvivalentna ukoliko im odgovara isto
stablo izvodenja
Za gramatiku G kažemo da je jednoznačna ako za svaku reč w ∈ L(G) postoji jedinstveno
stablo izvodenja (tj. ako su sva izvodenja reči w medusobno ekvivalentna)
Gramatika je vǐseznačna ako nije jednoznačna

Primedba

Za svako stablo izvodenja reči w u gramatici G postoji jedinstveno najlevlje (najdešnje)
izvodenje koje mu odgovara
Otuda je gramatika jednoznačna akko za svaku reč w ∈ L(G) postoji jedinstveno najlevlje
(najdešnje) izvodenje

Napomene

Vǐseznačnost je svojstvo gramatike, a ne jezika
Isti jezik može biti generisan različitim gramatikama, pri čemu neke mogu biti jednoznačne,
a neke vǐseznačne
Jezik je inherentno vǐseznačan ako su sve gramatike koje ga generǐsu vǐseznačne

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Gramatika iz prethodnog primera je vǐseznačna, jer smo videli da reč a+ a+ a
ima dva različita stabla izvodenja:

E E

_/ | _ _/ | _

/ | \ / | \

E + E E + E

| _/ | _ _/ | _ |

| / | \ / | \ |

a E + E E + E a

| | | |

a a a a

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Stablima izvodenja sa prethodnog slajda odgovaraju sledeća stabla apstraktne
sintakse:

+ +

_/ _ _/ _

/ \ / \

a + + a

_/ _ _/ _

/ \ / \

a a a a

U prvom slučaju imamo desnu asocijativnost operatora +, a u drugom slučaju
levu asocijativnost. Dakle, semantika izraza a+ a+ a će zavisiti od toga koje
izvodenje izaberemo.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Vǐseznačnost: uzroci i posledice

Vǐseznačnost gramatike, po pravilu, ima za posledicu vǐseznačnost
semantike jezika
Zbog toga je neophodno izbeći vǐseznačnost kada god je to moguće
U ovom primeru, uzrok vǐseznačnosti je nedefinisana asocijativnost
operatora +
Na koji način možemo pravilima gramatike definisati asocijativnost
operatora?

Problem je u dvostrukoj rekurziji u pravilu E −→ E + E
Levo E omogućava levu asocijativnost, jer je moguće izvesti
E =⇒ E + E︸ ︷︷ ︸+E

Desno E omogućava desnu asocijativnost, jer je moguće izvesti
E =⇒ E + E + E︸ ︷︷ ︸

Osnovni princip: leva asocijativnost se postiže levom rekurzijom, a desna
desnom

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Posmatrajmo sada gramatiku:
E −→ E + a

| a

Lako se može videti da je ova gramatika ekvivalentna prethodnoj, u smislu da generǐse
isti jezik. Medutim, ova gramatika je jednoznačna. Jedino najlevlje izvodenje reči
a+ a+ a u ovoj gramatici je: E =⇒ E + a =⇒ E + a+ a =⇒ a+ a+ a (ovo je ujedno i
najdešnje izvodenje). Jedinstveno stablo izvodenja ove reči je:

E

_/ | _

/ | \

E + a

/ | _

/ | \

E + a

|

a

Ovoga puta, leva asocijativnost je garantovana.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Ako želimo desnu asocijativnost operatora +, možemo da koristimo gramatiku:

E −→ a+ E
| a

Jedino najlevlje izvodenje reči a+ a+ a u ovoj gramatici je:
E =⇒ a+ E =⇒ a+ a+ E =⇒ a+ a+ a. Jedinstveno stablo izvodenja je:

E

_/ | _

/ | \

a + E

_/ | _

/ | \

a + E

|

a

Ovoga puta imamo desnu asocijativnost.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Posmatrajmo gramatiku:
E −→ E + E

| E ∗ E
| a

U ovoj gramatici opet imamo vǐseznačnost, ovog puta iz vǐse razloga: pored nedefinisane
asocijativnosti, imamo nedefinisan i prioritet operatora. Na primer, ako imamo reč jezika
a+ a ∗ a, možemo imati sledeće najlevlje izvodenje:
E =⇒ E + E =⇒ a+ E =⇒ a+ E ∗ E =⇒ a+ a ∗ E =⇒ a+ a ∗ a. Sa druge strane,
možemo imati i sledeće najlevlje izvodenje:
E =⇒ E ∗ E =⇒ E + E︸ ︷︷ ︸ ∗E =⇒ a+ E ∗ E =⇒ a+ a ∗ E =⇒ a+ a ∗ a. Ovim izvodenjima

odgovaraju sledeća dva stabla:

E E

_/ | _ _/ | _

/ | \ / | \

E + E E * E

| _/ | _ _/ | _ |

| / | \ / | \ |

a E * E E + E a

| | | |

a a a a

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Stablima izvodenja sa prethonog slajda odgovaraju sledeća apstraktna sintaksna stabla:

+ *

_/ _ _/ _

/ \ / \

a * + a

_/ _ _/ _

/ \ / \

a a a a

Dakle, u prvom slučaju se izraz izračunava tako što se prvo primeni operacija množenja,
dok se u drugom slučaju prvo primenjuje operacija sabiranja. Opet imamo različita
značenja istog izraza!

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Problem možemo da pokušamo da rešimo na stari način, fiksiranjem leve (ili desne)
asocijativnosti: posmatrajmo gramatiku:

E −→ E + a
| E ∗ a
| a

Ova gramatika je sada jednoznačna: jedino najlevlje izvodenje reči a+ a ∗ a je sada
E =⇒ E ∗ a =⇒ E + a ∗ a =⇒ a+ a ∗ a. Medutim, ovo verovatno nije ono što bismo želeli:

E

_/ | _

/ | \

E * a

_/ | _

/ | \

E + a

|

a

Mi bismo želeli da množenje ima vǐsi prioritet, ali to ovde nije tako.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Prva ideja koja nam pada na pamet je da probamo desnu asocijativnost:

E −→ a+ E
| a ∗ E
| a

Jedino najlevlje izvodenje reči a+ a ∗ a je sada E =⇒ a+ E =⇒ a+ a ∗ E =⇒ a+ a ∗ a.
Stablo izvodenja je sada:

E

_/ | _

/ | \

a + E

_/ | _

/ | \

a * E

|

a

Sada deluje u redu. Izgleda da smo uspeli. Ili nismo?

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Posmatrajmo ponovo desno rekurzivnu gramatiku sa prethodnog slajda:

E −→ a+ E
| a ∗ E
| a

i reč a ∗ a+ a. Ovoga puta imamo najlevlje izvodenje:
E =⇒ a ∗ E =⇒ a ∗ a+ E =⇒ a ∗ a+ a, kao i stablo:

E

_/ | _

/ | \

a * E

_/ | _

/ | \

a + E

|

a

Opet imamo pogrešan prioritet. Kako sad to?

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Uzroci vǐseznačnosti ponovo

U prethodnom primeru imali smo vǐseznačnost usled nedefinisane
asocijativnosti i prioriteta
Fiksiranjem leve (ili desne) rekurzije rešili smo problem asocijativnosti, ali
šta je sa prioritetima?
Zapravo, u gornjim rešenjima oba operatora imala su jednak prioritet
Redosled izvřsavanja operatora u slučaju istih prioriteta odreden je
asocijativnošću:

Ako su operatori levo asocijativni, tada se izraz izračunava sa leva na desno
Ako su operatori desno asocijativni, tada se izraz izračunava sa desna na
levo

Otuda se kod desno asocijativne verzije gramatike u izrazu a+ a ∗ a prvo
izračunavalo množenje (kao što i želimo), a u izrazu a ∗ a+ a se prvo
izračunavalo sabiranje (što nije ono što želimo).

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Posmatrajmo sledeću gramatiku:
E −→ E + T

| T
T −→ T ∗ a

| a

Ova gramatika je ekvivalentna sa prethodnim gramatikama. Medutim, sada za reč a+ a ∗ a imamo
sledeće jedinstveno najlevlje izvodenje:
E =⇒ E + T =⇒ T + T =⇒ a+ T =⇒ a+ T ∗ a =⇒ a+ a ∗ a. Slično, za reč a ∗ a+ a imamo
najlevlje izvodenje: E =⇒ E + T =⇒ T + T =⇒ T ∗ a+ T =⇒ a ∗ a+ T =⇒ a ∗ a+ a. Ovim
izvodenjima odgovaraju sledeća stabla:

E E

_/ | _ _/ | _

/ | \ / | \

E + T E + T

| _/ | _ | |

| / | \ T a

T T * a _/ | _

| | / | \

a a T * a

|

a

Sada je u oba slučaja prioritet u redu.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Rešenje za prioritet operatora

Prioriteti se rešavaju uvodenjem gramatičkih kategorija na vǐse
nivoa
U prethodnom primeru, E je izraz, a T je term

Izraz je zbir termova
Term je proizvod atoma

Operatori nižeg prioriteta se navode na vǐsem nivou u gramatici
Operatori vǐseg prioriteta se navode niže u gramatici
Operatori na istom nivou imaju isti prioritet
Šta ako želimo da možemo da menjamo prioritet po potrebi?

Tome u izrazima služe zagrade: treba ih uvesti u gramatiku!

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Posmatrajmo gramatiku:
E −→ E + T

| T
T −→ T ∗ F

| F
F −→ (E)

| a

Reč a ∗ a+ a pripada jeziku ove gramatike. Jedinstveno najlevlje izvodenje ove reči je:
E =⇒ E + T =⇒ T + T =⇒ T ∗ F + T =⇒ F ∗ F + T =⇒ a ∗ F + T =⇒ a ∗ a+ T =⇒ a ∗ a+ F =⇒ a ∗ a+ a. Sa
druge strane, reč a ∗ (a+ a), koja takode pripada jeziku ove gramatike ima najlevlje izvodenje:
E =⇒ T =⇒ T ∗ F =⇒ F ∗ F =⇒ a ∗ F =⇒ a ∗ (E) =⇒ a ∗ (E + T) =⇒ a ∗ (T + T) =⇒ a ∗ (F + T) =⇒
a ∗ (a+ T) =⇒ a ∗ (a+ F) =⇒ a ∗ (a+ a). Stabla ova dva izvodenja su:

E E

_/ | _ |

/ | \ T

E + T _/ | _

| | / | \

T F T * F

_/ | _ | | _/ | _

/ | \ | | / | \

T * F a F (E)

| | | _/ | _

F a | / | \

| a E + T

a | |

T F

| |

F a

|

a

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Asocijativnost i prioritet

Operatori istog prioriteta moraju imati istu asocijativnost
U suprotnom, gramatika će biti vǐsežnačna

Primer

Posmatrajmo gramatiku:
E −→ a+ E

| E − a
| a

Reč a+ a− a sada ima dva najlevlja izvodenja. Jedno je:
E =⇒ a+ E =⇒ a+ E − a =⇒ a+ a− a, a drugo je
E =⇒ E − a =⇒ a+ E − a =⇒ a+ a− a. Za vežbu nacrtati odgovarajuća stabla
izvodenja i uveriti se da su različita.

Napomena

Ovo ne važi za operatore različitog prioriteta koji ne moraju da imaju istu
asocijativnost.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Kompletna gramatika aritmetičkih izraza sa četiri osnovne računske operacije bi mogla da izgleda ovako:

E −→ E + T
| E − T
| T

T −→ T ∗ F
| T/F
| F

F −→ (E)
| a

Najniži prioritet imaju sabiranje i oduzimanje, koji su levo asocijativni. Množenje i deljenje imaju vǐsi prioritet i takode su
levo asocijativni. Zagradama se prioritet može promeniti.

Primer

Ako želimo da u gramatiku uključimo i unarne operatore + i − (koji se zapisuju prefiksno), imali bismo gramatiku:

E −→ E + T
| E − T
| T

T −→ T ∗ F
| T/F
| F

F −→ +F
| −F
| A

A −→ (E)
| a

Unarni operatori imaju najvǐsi prioritet i zato su pri dnu gramatike.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Ovaj primer uključuje fragment gramatike jezika C sa unarnim operatorom ∗ i postfiksnim operatorom ++:

E −→ ∗E
| ++ E
| P

P −→ P ++
| A

A −→ (E)
| a

Na primer, niske ∗a++ i (∗a) + + bi imale, respektivno, sledeća stabla izvodenja (kao i odgovarajuća apstraktna stabla):

E * E ++

_/ _ | | |

/ \ ++ P *

* E | _/ _ |

| a / \ a

P P ++

_/ _ |

/ \ A

P ++ _/ | _

| (E)

A _/ _

| / \

a * E

|

P

|

A

|

a

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Posmatrajmo sledeći primer fragmenta gramatike jezika C koji opisuje naredbe:

S −→ E ;
| while(E) S
| do S while(E);
| for(E ;E ;E) S
| . . .
| if (E) S
| if (E) S else S
| {L}

L −→ L S
| ε

Ova gramatika je vǐseznačna. Problem je u if naredbi koja može, ali ne mora da ima else granu. Tako, na
primer, naredba if (E)if (E)E ; else E ; može da ima dva moguća stabla izvodenja:

S S

__|__ _____|_________

/ /|\ \ / / / | \ \ \

if (E) S if (E) S else S

_____|_______ __|__ / \

/ / / | \ \ \ / /|\ \ E ;

if (E) S else S if (E) S

/ \ / \ / \

E ; E ; E ;

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Stablima izvodenja sa prethodnog slajda odgovaraju sledeća stabla
apstraktne sintakse:

if if

/ \ _/ | _

E if / | \

_/ | _ E if E

/ | \ / \

E E E E E

Otuda semantika ove naredbe nije jednoznačno odredena.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Ovaj problem se obično rešava na sledeći način:

S −→ U
| N

U −→ E ;
| while(E) U
| do S while(E);
| for(E ;E ;E) U
| . . .
| {L}
| if (E) U else U

L −→ L S
| ε

N −→ if (E) U else N
| while(E) N
| for(E ;E ;E) N
| if (E) S

Intuitivno, naredba je ili uparena naredba (U) ili neuparena naredba (N). Uparene naredbe su sve ne-if
naredbe, kao i uparena if naredba (koja ima else granu koja sadrži uparenu naredbu). Neuparene
naredbe nastaju upotrebom if naredbe bez else grane. Sada je uslov da naredba u okviru direktne grane
if naredbe mora biti uparena, ako postoji i else grana.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Sada naredba if (E)if (E)E ; else E ; ima samo jedno stablo izvodenja:

S

|

N

___|___

/ | | | \

if (E) S

|

U

_____|________

/ | | | | | \

if (E) U else U

/ \ / \

E ; E ;

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Primer

Sledeći primer prikazuje pojednostavljeni fragment gramatike jezika C koji opisuje deklaracije:

D −→ T L;
L −→ L,K

| K
T −→ int

| double
| ...

K −→ ∗K
| P

P −→ P[c]
| A

A −→ (K)
| id

gde je c token koji označava celobrojnu konstantu, a id token koji označava identifikator. Sada se deklaracija
int ∗ a[3], (∗ ∗ b[3])[2]; može izvesti na sledeći način:
D =⇒ T L; =⇒ int L; =⇒ int L,K ; =⇒ int K ,K ; =⇒ int ∗ K ,K ; =⇒ int ∗ P,K ; =⇒ int ∗ P[c],K ; =⇒
int ∗ A[c],K ; =⇒ int ∗ id [c],K ; =⇒ int ∗ id [c],P; =⇒ int ∗ id [c],P[c]; =⇒ int ∗ id [c],A[c]; =⇒
int ∗ id [c], (K)[c]; =⇒ int ∗ id [c], (∗K)[c]; =⇒ int ∗ id [c], (∗ ∗ K)[c]; =⇒ int ∗ id [c], (∗ ∗ P)[c]; =⇒
int ∗ id [c], (∗ ∗ P[c])[c]; =⇒ int ∗ id [c], (∗ ∗ A[c])[c]; =⇒ int ∗ id [c], (∗ ∗ id [c])[c]; (lekseme a, b, 2 i 3 su
apstrahovane odgovarajućim tokenima).

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Napomena

Iako vǐseznačne gramatike imaju očigledne nedostatke imaju i jednu prednost: obično su
znatno jednostavnije

Primer

Vǐseznačna gramatika aritmetičkih izraza bi mogla da izgleda ovako:

E −→ E + E
| E − E
| E ∗ E
| E/E
| (E)
| a

Napomena

Kasnije u toku semestra ćemo videti da pojedini alati mogu da prihvataju i ovakve
gramatike, pod uslovom da se prioriteti i asocijativnost eksplicitno definǐsu.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Jednoznačne i vǐseznačne gramatike

Jednoznačne i vǐseznačne gramatike

Domaći zadatak

Proučiti gramatiku jezika C koja se nalazi u dodatku knjige
,,Programski jezik C” Brajana Kernigena i Denisa Ričija.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Transformacije gramatika

Zašto transformisati gramatiku?

Videli smo da gramatika koja generǐse dati kontekstno
slobodni jezik nije jednoznačna

Često je moguće gramatiku transformisati u ekvivalentnu
gramatiku koja ima formu koja je za nas u nekom smislu
pogodnija

Neke forme gramatike su pogodne u teorijskom smislu, jer se
na njima mogu lakše dokazati neka svojstva
Druge su korisne u praksi, jer se na njih mogu primeniti neke
efikasne metode prepoznavanja jezika

Zbog toga u nastavku proučavamo neke najčešće
transformacije gramatika koje se u literaturi javljaju

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija nekorisnih simbola

Definicija 13

Nezavřsni simbol gramatike A je nekorisan, ako ne postoji ni jedno
izvodenje oblika: S =⇒∗ αAβ =⇒∗ w, gde je w ∈ Σ∗.
Gramatika je čista ako ne sadrži nekorisne simbole.

Dakle, simbol je nekorisan ako ne učestvuje ni u jednom izvodenju
neke reči jezika.

Neproduktivni i nedostižni simboli

Simbol A je nekorisan ako je ili neproduktivan ili nedostižan:

Simbol A je produktivan ako A =⇒∗ w (w ∈ Σ∗). Simbol je
neproduktivan ako nije produktivan.

Simbol A je dostižan ako S =⇒∗ αAβ. Simbol je nedostižan
ako nije dostižan.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija nekorisnih simbola

Eliminacija neproduktivnih simbola

Najpre odredujemo skup produktivnih simbola

Ako postoji pravilo A −→ w , gde je w ∈ Σ∗, tada se A dodaje
u skup produktivnih simbola
Ako postoji pravilo A −→ X1X2 . . .Xk , tako da je svako Xi ili
terminal ili je već u skupu produktivnih, tada se A dodaje u
skup produktivnih simbola
Postupak se ponavlja do dostizanja fiksne tačke

Kada odredimo skup produktivnih simbola, one koji nisu u
tom skupu eliminǐsemo kao neproduktivne

Eliminǐsu se sva pravila koja sadrže neproduktivne simbole, bilo
sa leve, bilo sa desne strane

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija nekorisnih simbola

Primer

Posmatrajmo gramatiku:
S −→ AB

| CA
A −→ a
B −→ ABD

| EA
C −→ aB

| b
D −→ aC
E −→ BA

U skup produktivnih simbola prvo dodajemo A (zbog pravila A −→ a), kao i C (zbog
pravila C −→ b). Nakon toga dodajemo i simbol S (zbog pravila S −→ CA), kao i D
(zbog pravila D −→ aC). Dalje proširivanje skupa produktivnih simbola nije moguće.
Otuda su simboli E i B neproduktivni. Njihovom eliminacijom dobijamo gramatiku:

S −→ CA
A −→ a
C −→ b
D −→ aC

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija nekorisnih simbola

Eliminacija nedostižnih simbola

Najpre formiramo skup dostižnih simbola:

Simbol S dodajemo u skup dostižnih simbola
Ako je simbol A u skupu dostižnih simbola i postoji pravilo
A −→ αBβ, tada se B dodaje u skup dostižnih simbola
Postupak se ponavlja do dostizanja fiksne tačke

Kada odredimo skup dostižnih simbola, one koji nisu u tom
skupu eliminǐsemo kao nedostižne

Eliminǐsemo sva pravila koja sadrže nedostižne simbole, bilo sa
leve, bilo sa desne strane

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija nekorisnih simbola

Primer

Vratimo se na gramatiku dobijenu eliminacijom neproduktivnih simbola u
prethodnom primeru:

S −→ CA
A −→ a
C −→ b
D −→ aC

Simbol S je dostižan. Otuda su dostižni i simboli C i A. Dalje proširivanje
skupa dostižnih simbola nije moguće, pa je simbol D nedostižan. Njegovom
eliminacijom dobijamo gramatiku:

S −→ CA
A −→ a
C −→ b

Ova gramatika je čista (ne sadrži ni neproduktivne ni nedostižne simbole).

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija nekorisnih simbola

Napomena

Postavlja se pitanje da li prvo uklanjati neproduktivne ili
nedostižne simbole?

Eliminacijom neproduktivnih simbola mogu nastati novi
nedostižni simboli
Eliminacijom nedostižnih simbola se ne kreiraju novi
neproduktivni

Odavde sledi da je prvo potrebno ukloniti neproduktivne, pa
zatim nedostižne (i stare i novonastale).

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija nekorisnih simbola

Primer

Vratimo se ponovo na gramatiku:

S −→ AB
| CA

A −→ a
B −→ ABD

| EA
C −→ aB

| b
D −→ aC
E −→ BA

Da smo prvo eliminisali nedostižne simbole, ne bismo eliminisali nǐsta, jer su u ovoj
gramatici svi simboli dostižni. Nakon toga bismo, kao i ranije, eliminacijom
neproduktivnih simbola dobili gramatiku:

S −→ CA
A −→ a
C −→ b
D −→ aC

koja nije čista, jer u njoj postoji nedostižni simbol D (koji nije bio nedostižan u početnoj
gramatici, već je to postao eliminacijom neproduktivnih simbola).

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija ε-pravila

ε-slobodne gramatike

ε-pravila su veoma česta u gramatikama
Ipak, u nekim slučajevima nije pogodno da postoje ovakva pravila

Postojanje ε-pravila u gramatici omogućava skraćivanje rečeničnih
formi tokom izvodenja
Ovo svojstvo ponekad može da smeta, kako u teorijskim, tako i u
praktičnim razmatranjima

Ipak, za metode parsiranja koja ćemo mi izučavati, ε-pravila obično
neće predstavljati problem

Da li je moguće u potpunosti se osloboditi ε-pravila?

Na žalost, ε-pravila nije moguće eliminisati u potpunosti. Naime, jasno je
da gramatika bez ε-pravila ne može generisati praznu reč (a ona može
pripadati kontekstno slobodnim jezicima).

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija ε-pravila

Definicija 14

Za gramatiku kažemo da je ε-slobodna ako:

ne sadrži ni jedno ε-pravilo, ili
sadrži samo jedno ε-pravilo S −→ ε, pri čemu je S početni simbol
gramatike i on se ne pojavljuje na desnoj strani ni jednog od pravila
gramatike.

Napomena

Ovom ,,relaksiranom” definicijom smo ostavili mogućnost da generǐsemo
praznu reč ε izvodenjem S =⇒ ε, dok u svim ostalim izvodenjima
garantovano nema primene ε-pravila, tj. nema skraćivanja rečeničnih formi
tokom izvodenja.

Teorema 2

Za svaku konteksno slobodnu gramatiku G postoji ekvivalentna
kontekstno slobodna gramatika G ′ koja je ε-slobodna.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija ε-pravila

Napomena

Dokaz prethodne teoreme daćemo tako što ćemo konstruisati algoritam koji
transformǐse proizvoljnu gramatiku G u njoj ekvivalentnu ε-slobodnu gramatiku G ′.

Definicija 15

Za neterminal A kažemo da je anulirajući ako A =⇒∗ ε. Skup svih anulirajućih
simbola gramatike G označavamo sa Nε(G) (ili samo Nε, ako je jasno o kojoj
gramatici je reč).

Algoritam eliminacije ε-pravila

Formiramo skup svih anulirajućih simbola gramatike Nε

Svako pravilo gramatike A −→ α zamenimo skupom pravila koja nastaju tako
što na sve moguće načine eliminǐsemo anulirajuće simbole iz niske α
ε-pravila eliminǐsemo iz skupa pravila
Ako je S ∈ Nε, tada se u gramatiku dodaje novi početni simbol S ′, kao i pravila
S ′ −→ S | ε

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija ε-pravila

Algoritam odredivanja skupa anulirajućih simbola

Iniicijalno, Nε = ∅
Ako u gramatici G postoji pravilo A −→ ε, tada simbol A
dodajemo u skup Nε

Ako u gramatici G postoji pravilo A −→ α, pri čemu svi
simboli iz α pripadaju skupu Nε, tada se i simbola A dodaje u
skup Nε

Postupak se nastavlja do dostizanja fiksne tačke

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija ε-pravila

Primer

Neka je data gramatika:
S −→ aSb

| ε

Ova gramatika nije ε-slobodna: jeste da ima samo jedno ε-pravilo S −→ ε, gde je S
početni simbol, ali se ovaj simbol nalazi i na desnoj strani nekog od pravila gramatike, što
nije dozvoljeno po definiciji.
Da bismo transformisali ovu gramatiku, odredimo najpre skup anulirajućih simbola Nε.
Kod nas je to skup Nε = {S}. Sada se pravilo S −→ aSb zamenjuje skupom pravila
S −→ aSb, S −→ ab, dok se ε-pravilo izbacuje. Kako je S ∈ Nε, dodajemo novi početni
simbol S ′, čime dobijamo gramatiku:

S ′ −→ S
| ε

S −→ aSb
| ab

Ova gramatika je ε-slobodna i ekvivalentna je polaznoj.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija ε-pravila

Primer

Neka je data gramatika:
S −→ ABC
A −→ CAC

| C
C −→ aC

| ε
B −→ bC

U skup anulirajućih simbola najpre dodajemo C (zbog pravila C −→ ε), a zatim A
(zbog pravila A −→ C). Otuda je Nε = {A,C}. Sada se npr. pravilo S −→ ABC
može zameniti skupom pravila S −→ ABC | BC | AB | B (ili ne eliminǐsemo nǐsta,
ili samo A, ili samo C, ili oba). Slično postupimo i sa ostalim pravilima, dok
ε-pravila izbrǐsemo. Konačni rezultat je sledeća gramatika:

S −→ ABC
| BC
| AB
| B

A −→ CAC
| AC
| CC
| CA
| C

C −→ aC
| a

B −→ bC
| b

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija jednostrukih pravila

Definicija 16

Pravilo gramatike je jednostruko pravilo ako je oblika A −→ B, gde su A i B
neterminali.

Zbog čega želimo da eliminǐsemo ovakva pravila?

Postojanje jednostrukih pravila može produžavati izvodenja (npr.
αAβ =⇒ αBβ =⇒ αCβ =⇒ . . .)

Ovo utiče samo na efikasnost i nije toliko kritično

Ukoliko postoje ciklusi jednostrukih pravila
(npr. A −→ B,B −→ C ,C −→ A), ovo može dovesti do beskonačnih
petlji tokom izvodenja
(αAβ =⇒ αBβ =⇒ αCβ =⇒ αAβ =⇒ αBβ =⇒ . . .)

POSLEDICA: Gramatika koja sadrži ovakve cikluse je vǐseznačna!!

Otuda je eliminacija jednostrukih pravila neophodna jedino ako postoje
ciklusi

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija jednostrukih pravila

Algoritam eliminacije jednostrukih pravila

Pretpostavimo da je data gramatika ε-slobodna (ako nije, transformǐsemo je
najpre u ekvivalentnu ε-slobodnu gramatiku).

Za svaki neterminal A odredimo skup JA = {B ∈ N | A =⇒∗ B}
Ovaj skup možemo odrediti obilaskom grafa u kome su čvorovi neterminali,
a grane su jednostruka pravila
Skup svih čvorova dostižnih iz A čine skup JA
Primetimo da je uvek A ∈ JA

Sada za svaki neterminal A, skup njegovih pravila zamenjujemo skupom
pravila koji nastaje tako što za svako B ∈ JA uzmemo desne strane svih
ne-jednostukih pravila simbola B iz originalne gramatike

Teorema 3

Gramatika dobijena opisanim algoritmom ne sadrži jednostruka pravila i
ekvivalentna je sa polaznom.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija jednostrukih pravila

Primer

Neka je data gramatika iz prethodnog primera:

S −→ ABC
| BC
| AB
| B

A −→ CAC
| AC
| CC
| CA
| C

C −→ aC
| a

B −→ bC
| b

Sada imamo JS = {S ,B}, JA = {A,C}, JB = {B}, JC = {C}. Skup pravila za
simbol S dobijamo tako što objedinimo sva ne-jednostruka S-pravila i sva
ne-jednostruka B-pravila. Slično uradimo i za sve ostale simbole. Dobijamo
gramatiku:

S −→ ABC
| BC
| AB
| bC
| b

A −→ CAC
| AC
| CC
| CA
| aC
| a

C −→ aC
| a

B −→ bC
| b

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija jednostrukih pravila

Primer

Posmatrajmo gramatiku izraza:

E −→ E + T
| T

T −→ T ∗ F
| F

F −→ (E)
| a

U ovoj gramatici imamo: JF = {F}, JT = {T ,F}, JE = {E ,T ,F}. Sada
eliminacijom jednostrukih pravila dobijamo gramatiku:

E −→ E + T
| T ∗ F
| (E)
| a

T −→ T ∗ F
| (E)
| a

F −→ (E)
| a

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija jednostrukih pravila

Napomene

Eliminacijom jednostrukih pravila skraćuju se izvodenja, ali
zato gramatika postaje znatno složenija

U praksi se ne primenjuje, osim u slučaju da postoje ciklusi

Definicija 17

Gramatika je svojstvena ako je ε-slobodna i ne sadrži cikluse
(tj. izvodenja oblika A =⇒∗ A).

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija leve rekurzije

Podsetnik

Levo rekurzivno pravilo je pravilo oblika A −→ Aα (gde je
α ∈ (Σ ∪ N)+).

Zbog čega je eliminǐsemo ovakva pravila?

Za neke metode parsiranja koje ćemo raditi, leva rekurzija nije
dozvoljena

Sa druge strane, kao što znamo, rekurziju nije moguće u
potpunosti eliminisati

Ono što možemo je da, u slučaju potrebe, levu rekurziju
zamenimo desnom

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija leve rekurzije

Algoritam eliminacije leve rekurzije

Neka su data pravila za simbola A:

A −→ Aα1 | Aα2 | . . . | Aαn

| β1 | β2 | . . . | βm

pri čemu su u prvom redu navedena levo-rekurzivna pravila, a u drugom redu
pravila koja nisu levo-rekurzivna. Ovaj skup pravila zamenjujemo skupom
pravila:

A −→ β1A
′ | β2A′ | . . . | βmA′

A′ −→ α1A
′ | α2A

′ | . . . | αnA
′ | ε

gde je A′ novouvedeni neterminal.

Primedba

Ovim postupkom se uvodi ε-pravilo, pa gramatika vǐse nije ε-slobodna (ako je
prethodno bila).

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija leve rekurzije

Varijanta algoritma bez uvodenja ε-pravila

Pravila za simbol A:

A −→ Aα1 | Aα2 | . . . | Aαn

| β1 | β2 | . . . | βm

zamenjujemo skupom pravila:

A −→ β1A
′ | β2A′ | . . . | βmA′

| β1 | β2 | . . . | βm
A′ −→ α1A

′ | α2A
′ | . . . | αnA

′

| α1 | α2 | . . . | αn

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija leve rekurzije

Primer

Neka je data gramatika izraza:

E −→ E + T
| T

T −→ T ∗ F
| F

F −→ (E)
| a

Ovde je leva rekurzija prisutna kod simbola E i T . Eliminacijom leve rekurzije
dobijamo gramatiku:

E −→ TE ′

E ′ −→ +TE ′ | ε
T −→ FT ′

T ′ −→ ∗FT ′ | ε
F −→ (E)

| a

gde su E ′ i T ′ novouvedeni neterminali.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija leve rekurzije

Primer

(nastavak) U slučaju da smo želeli da izbegnemo ε-pravila, dobili
bismo gramatiku:

E −→ TE ′ | T
E ′ −→ +TE ′ | + T
T −→ FT ′ | F
T ′ −→ ∗FT ′ | ∗ F
F −→ (E)

| a

Ovo je isto kao da smo na prethodni rezultat primenili algoritam
eliminacije ε-pravila.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija leve rekurzije

A šta ako imamo posrednu levu rekurziju?

Posredna leva rekurzija postoji u gramatici ako postoji izvodenje oblika
A =⇒+ Aα, gde α ∈ (Σ ∪ N)+.

Da li ovo smeta?

Posredna leva rekurzija je jednako nepovoljna po neke metode parsiranja kao i
neposredna. Zbog toga je i nju neophodno eliminisati pre primene takvih
metoda.

Kako je prepoznati?

Pretpostavimo da je gramatika ε-slobodna:

Formiramo graf u kome su čvorovi neterminali, a grana od A do B postoji
akko postoji pravilo oblika A −→ Bα (α ∈ (Σ ∪ N)∗)
Ako u tom grafu postoje ciklusi (petlje) tada u gramatici postoji posredna
(neposredna) leva rekurzija

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija leve rekurzije

Algoritam eliminacije posredne leve rekurzije

Poredamo sve neterminale u niz A1,A2, . . . ,An:

Trudimo se da, kad god je to moguće, poredak bude takav da simbol X
bude ispred Y kad god postoji pravilo X −→ Yα.

Formiramo grane od simbola Ai do simbola Aj gde god postoji pravilo
oblika Ai −→ Ajα

ako nema petlji ni ,,povratnih” grana (tj. grana koje idu od Ai do Aj , gde je
i ≥ j), tada u gramatici nema leve rekurzije (ni posredne ni neposredne)

Povratne grane i petlje eliminǐsemo sa leva u desno:

za svaki simbol Ai (za i = 1, 2, . . . , n, tim redom) ispitujemo da li postoji
povratna grana od Ai do Aj , tj. pravilo oblika Ai −→ Ajα (za j = 1, 2, . . . , i ,
tim redom).
Ako postoji pravilo Ai −→ Ajα, gde je i > j , tada se ovo pravilo zamenjuje
skupom pravila oblika Ai −→ αk

j α, gde su Aj −→ αk
j pravila za simbol Aj u

datoj gramatici
Ako postoji pravilo Ai −→ Aiα, tada se ovo pravilo uklanja eliminacijom
neposredne leve rekurzije

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija leve rekurzije

Primer

Neka je data gramatika:
X −→ Yb | aZ
Y −→ Ya | Zb
Z −→ Wa | Xb | Yc | c
W −→ aW | b

Pretpostavimo da smo odabrali poredak X ,Y ,Z ,W. Sada imamo sledeće grane u grafu:

Najpre se oslobadamo petlje na Y (neposredna leva rekurzija), gde se Y -pravila zamenjuju sledećim pravilima:

Y −→ ZbY ′

Y ′ −→ aY ′ | ε

Zatim se oslobadamo povratne grane od Z do X , tako što Z-pravila zamenjujemo sledećim pravilima:

Z −→ Wa | Ybb | aZb | Yc | c

Zatim se oslobadamo grane od Z do Y tako što Z-pravila zamenjujemo sledećim pravilima:

Z −→ Wa | ZbY ′bb | aZb | ZbY ′c | c

Sada nam se pojavila petlja na Z koje se oslobadamo eliminacijom neposredne leve rekurzije:

Z −→ WaZ ′ | aZbZ ′ | cZ ′

Z ′ −→ bY ′bbZ ′ | bY ′cZ ′ | ε

Sada vǐse nema povratnih grana ni petlji u gornjem grafu, te je dobijena gramatika bez leve rekurzije.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija leve rekurzije

Primedbe

U prethodnom postupku se moglo dogoditi da se eliminacijom
jedne povratne grane dobije nova povratna grana (ili petlja)

Zbog toga je bitno da se grane uklanjaju sa leva na desno,
kako bi se novostvorene grane ,,pokupile” u daljem postupku

Simboli koji se uvode prilikom eliminacije neposredne leve
rekurzije nikada nisu na početku desne strane nekog pravila
(pod pretpostavkom da je polazna gramatika bila ε-slobodna)

Otuda se oni uvek mogu staviti na početak niza (neće biti
uvedene nove povratne grane)

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija leve faktorisanosti

Definicija 18

Gramatika je levo faktorisana ako postoje pravila oblika
A −→ αγ1 | αγ2 | . . . | αγk , gde je α ∈ (Σ ∪ N)+, a
γ1, . . . , γk ∈ (Σ ∪ N)∗.

Napomena

Gramatika je, dakle, levo faktorisana, ako postoje dva ili vǐse pravila sa
istom levom stranom čije desne strane imaju zajednički neprazan
prefiks (levi faktor).

Zbog čega nam to smeta?

Kao i kod leve rekurzije, postojanje leve faktorisanosti onemogućava
primenu nekih metoda parsiranja, pa ju je u tim slučajevima potrebno
ukloniti.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija leve faktorisanosti

Algoritam uklanjanja leve faktorisanosti

Pravila A −→ αγ1 | αγ2 | . . . | αγk zamenjujemo pravilima:

A −→ αA′

A′ −→ γ1 | γ2 | . . . | γk
pri čemu pretpostavljamo da je α najduži mogući zajednički prefiks
za navedena pravila.

Prevodjenje programskih jezika – beleške sa predavanja Jezici i gramatike

Kontekstno-slobodni jezici

Transformacije gramatika

Eliminacija leve faktorisanosti

Primer

Neka je data gramatika:

S −→ aBS | acB | aBB | a
B −→ aBc | acB | b

Gramatika je levo faktorisana i za S-pravila i za B-pravila. U slučaju B pravila situacija je
jednostavna – prva dva pravila imaju zajednički prefiks a, pa uvodimo novi simbol B ′ i
pravila:

B −→ aB ′ | b
B ′ −→ Bc | cB

pri čemu pravilo B −→ b ostaje, jer ono nije bilo predmet eliminacije leve faktorisanosti.
U slučaju S pravila, situacija je složenija. Najpre imamo zajednički prefiks a za sva četiri
pravila. Eliminacijom ovog zajedničkog prefiksa dobijamo pravila:

S −→ aS ′

S ′ −→ BS | cB | BB | ε

Sada prvo i treće S ′ pravilo imaju zajednički prefiks B, pa se na njih dalje primenjuje isti
postupak (dok drugo i četvrto pravilo ostaju):

S −→ aS ′

S ′ −→ BS ′′ | cB | ε
S ′′ −→ S | B

	Azbuke, reči i jezici
	Azbuka i reč

	Regularni jezici i regularni izrazi
	Regularni jezici
	Regularni izrazi
	Prošireni regularni izrazi
	Regularni izrazi u leksičkoj analizi
	Ograničenja regularnih jezika

	Kontekstno-slobodni jezici
	Gramatike i jezici
	Stablo izvođenja
	Jednoznačne i višeznačne gramatike
	Transformacije gramatika

