
Prevodenje programskih jezika – beleške sa predavanja Leksička analiza

Prevodenje programskih jezika – beleške sa
predavanja

Leksička analiza

Milan Banković

*Matematički fakultet,
Univerzitet u Beogradu

Jesenji semestar 2025/26.



Prevodenje programskih jezika – beleške sa predavanja Leksička analiza

Leksička analiza

Pregled

1 Leksička analiza



Prevodenje programskih jezika – beleške sa predavanja Leksička analiza

Leksička analiza

Funkcije leksičkog analizatora

Funkcije leksičkog analizatora

Leksički analizator obavlja sledeće zadatke:

čitanje ulaza

prepoznavanje leksema i pridruživanje tokena

uklanjanje komentara



Prevodenje programskih jezika – beleške sa predavanja Leksička analiza

Leksička analiza

Čitanje ulaza

Čitanje ulaza

Čitanje ulaza

Čitanje ulaza je vremenski najzahtevniji posao

Mora biti efikasno implementirano

ne koristi se baferovanje standardne C biblioteke, jer nije
adekvatno za tu svrhu
implementira sopstveni bafer koji omogućava vraćanje vǐse od
jednog karaktera na ulaz
ovaj bafer se popunjava funkcijama za čitanje niskog nivoa
(npr. read() pod UNIX-om)



Prevodenje programskih jezika – beleške sa predavanja Leksička analiza

Leksička analiza

Prepoznavanje leksema

Prepoznavanje leksema

Gramzivi algoritam

Za svaki tip leksema, analizator sadrži po jedan PDKA koji prepoznaje odgovarajući jezik

C-implementacija ovih automata se generǐse automatski na osnovu regularnih izraza,
korǐsćenjem odgovarajućeg alata, poput Lex-a

Prilikom čitanja karaktera sa ulaza, svi automati prolaze kroz odgovarajuća stanja
U svakom trenutku pamtimo poslednju poziciju na ulazu za koju je neki od automata bio u
zavřsnom stanju
Kada svi automati udu u stanje greške, vraćamo se na zapamćenu poziciju, a pročitane
karaktere nakon te pozicije vraćamo u ulazni bafer (od njih počinje prepoznavanje sledeće
lekseme)
Na zapamćenoj poziciji se zavřsava prepoznata leksema, a automat koji je prepoznao
odreduje token koji joj pridružujemo

U slučaju da je vǐse automata bilo u zavřsnom stanju u tom trenutku, biramo jedan od njih na
neki unapred fiksiran način
Na primer, u slučaju Lex-a, prioritet imaju oni tokeni čiji su regularni izrazi definisani ranije
prilikom opisivanja leksičkog analizatora
Na primer, reč for će biti prepoznata i kao identifikator i kao ključna reč for, ali obično želimo
da prednost ima ovaj drugi slučaj

Pridruženi token se prosleduje sintaksnom analizatoru, a po potrebi i sama leksema



Prevodenje programskih jezika – beleške sa predavanja Leksička analiza

Leksička analiza

Prepoznavanje leksema

Prepoznavanje leksema

Posledice gramzivog algoritma

Gramzivi algoritam uvek prepoznaje najdužu leksemu počev od
trenutne pozicije na ulazu koja se uklapa u neki od regularnih
izraza koji opisuju klase leksema datog programskog jezika

Otuda će u slučaju da na ulazu imamo npr. ==, leksički
analizator prepoznati leksemu ==, a ne dve lekseme = jednu za
drugom

Slično, za ulaz x+++y, leksički analizator će prepoznati
lekseme x, ++, + i y, tim redom



Prevodenje programskih jezika – beleške sa predavanja Leksička analiza

Leksička analiza

Uklanjanje komentara

Uklanjanje komentara

Uklanjanje komentara

komentari se iz programa uklanjaju na sledeći način:

prepoznavanjem početka komentara ulazi se u režim komentara
u ovom režimu se deaktiviraju svi automati, a ulaz se ignorǐse
sve dok se ne pročita oznaka za kraj komentara (ili znak za
novi red, u slučaju jednolinijskih komentara)
kada se pročita oznaka za kraj komentara, analizator se vraća
u inicijalni režim u kome se aktiviraju automati i dalje se
postupa po gramzivom algoritmu

u slučaju programskih jezika koji uključuju pretprocesor (C,
C++), komentari se obično uklanjaju ranije, u fazi
pretprocesiranja


	Leksička analiza
	Funkcije leksičkog analizatora
	Čitanje ulaza
	Prepoznavanje leksema
	Uklanjanje komentara


