
Prevodjenje programskih jezika – beleške sa predavanja Uvod

Prevodjenje programskih jezika – beleške sa
predavanja

Uvod

Milan Banković

*Matematički fakultet,
Univerzitet u Beogradu

Jesenji semestar 2025/26.

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Uvod

Pregled

1 Uvod

2 Proces prevodjenja programa

3 Interpretacija i kompilacija

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Uvod

Motivacija

Motivacija

Čime se bavimo?

Do sada ste naučili da programirate na programskim jezicima
visokog nivoa (C, Java, C++)

Naučili ste i kako računar radi na niskom nivou (UOAR2), i na
koji način se sa njim može komunicirati (mašinski jezik,
asembler)

Svaki program na visokom nivou se mora prevesti na mašinski
jezik koji procesor razume, kako bi mogao da se izvřsi

Ovaj deo je ostao nerazjašnjen: kako da npr. C program
prevedemo na ekvivalentan asemblerski program?

Time se bavimo na ovom predmetu

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Uvod

Sadržaj predmeta

Sadržaj predmeta

Teme kojima se bavimo

Uvod u teoriju formalnih jezika
Regularni izrazi
Formalne gramatike
Konačni automati
Leksička analiza
Potisni automati
Sintaksna analiza (naniže i navǐse)
Elementi semantičke analize

Teme kojima se ne bavimo

Optimizacija koda
Generisanje koda
O tome ćete učiti na predmetu Konstrukcija kompilatora

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Uvod

Obaveze studenata

Obaveze studenata

Nastava

2 časa predavanja
3 časa vežbi
6 ESPB

Predispitne obaveze

Aktivno prisustvo na časovima (5 + 5 poena)
Testovi na predavanjima (10 poena)

Ispit

Praktični ispit (55 poena, prag 22 poena)

važi do kraja školske godine

Teorijski ispit (35 poena, prag 14 poena)

uslov za izlazak je ostvaren prag na praktičnom

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Pregled

1 Uvod

2 Proces prevodjenja programa

3 Interpretacija i kompilacija

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

O jezicima uopšte

O jezicima uopšte

Osnovne karakteristike jezika

Sintaksa jezika

Skup pravila koja definǐsu ispravne jezičke konstrukcije

Semantika jezika

Pravila koja definǐsu značenje ispravnih jezičkih konstrukcija

Kakvi jezici mogu biti?

Prirodni jezici (srpski, engleski, kineski,...)

Sintaksa nedovoljno precizno definisana
Semantika nije jednoznačna (postoje dvosmislene i besmislene rečenice)

Formalni jezici (programski jezici, jezici za obeležavanje, jezici
matematčke logike, ...)

Sintaksa precizno definisana odgovarajućim formalizmom (gramatika,
Bekus-Naurova notacija,...)
Semantika jednoznačna (svaka ispravna konstrukcija ima jedinstveno
značenje)

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Opšta struktura prevodioca

Opšta struktura prevodioca

Delovi prevodioca

Prednji deo: obavlja etapu analize

Ulaz prednjeg dela je program na vǐsem programskom jeziku
(izvorni jezik)
Izlaz prednjeg dela je stablo apstraktne sintakse sa pridruženim
semantǐskim informacijama

Zadnji deo: obavlja etapu sinteze

Ulaz zadnjeg dela je izlaz prednjeg dela
Izlaz zadnjeg dela je program na jeziku niskog nivoa (objektni
jezik; tipično asemblerski jezik)

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa analize

Etapa analize

Iz čega se sastoji etapa analize?

Leksička analiza

Razlaže izvorni kod programa na lekseme (,,reči” jezika)
Primeri leksema su identifikatori, celobrojne konstante, ključne reči, separatori,
operatori, i td.
Svaka leksema se klasifikuje po svojoj vrsti i zamenjuje odgovarajućim tokenom koji
predstavlja tu klasu (identifikator, celobrojna konstanta, itd.)
Dobijeni niz tokena se prosledjuje sintaksnom analizatoru

Sintaksna analiza

Dobija na ulazu niz tokena i u njemu prepoznaje ispravne jezičke konstrukcije
(,,rečenice” jezika)
Proverava da li je raspored tokena na ulazu u skladu sa sintaksnim pravilima jezika
Pravila jezika najčešće su opisana u nekom formalnom sistemu (gramatike,
Bekus-Naurova notacija)
Na osnovu pravila jezika generǐse se stablo izvodenja, kao i apstraktno sintaksno stablo

Semantička analiza

Razmatraju se dodatna jezička pravila koja nije moguće opisati gramatikom (tipovi,
dometi, prava pristupa, i sl.)
Odgovarajuće semantičke informacije se pridružuju čvorovima sintaksnog stabla i ono se
po potrebi modifikuje

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa analize

Primer – leksička analiza

Primer

Ako na ulazu imamo:
Povrsina = (OsnovicaA + OsnovicaB) * Visina / 2.0;

tada će leksički analizator redom prepoznati sledeći niz leksema:
Povrsina, =, (, OsnovicaA, +, OsnovicaB,), *, Visina, /, 2.0,
;

Primetimo da se razmaci ignorǐsu. Ovaj niz leksema se konvertuje
u sledeći niz tokena:
<id>, <op_dodela>, <lz>, <id>, <op_sabiranje>, <id>, <dz>,
<op_mnozenje>, <id>, <op_deljenje>, <realna_konstanta>,
<tz>

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa analize

Primer – leksička analiza

Primer

Ako na ulazu imamo:
01pera01

tada će leksički analizator redom prepoznati sledeći niz leksema:
01, pera01
kom odgovara niz tokena:
<oktalna_konstanta>, <id>

Primer

Ako na ulazu imamo:
x+++y

tada će leksički analizator prepoznati sledeći niz leksema:
x, ++, +, y
(tzv. gramzivi algoritam, uzima najdužu moguću leksemu koju
prepoznaje). Sa druge strane, ako imamo:
x + ++y

tada imamo niz leksema:
x, +, ++, y

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa analize

Primer – sintaksna analiza

Primer

Vratimo se na primer:
Povrsina = (OsnovicaA + OsnovicaB) * Visina / 2.0;

i dobijeni niz tokena:
<id>, <op_dodela>, <lz>, <id>, <op_sabiranje>, <id>, <dz>,
<op_mnozenje>, <id>, <op_deljenje>, <realna_konstanta>, <tz>
koji prosledjujemo sintaksnom analizatoru. Pretpostavimo da imamo sledeća
sintaksna pravila jezika:

Naredba ::= Izraz <tz>

Izraz ::= Izraz <op_sabiranje> Izraz

Izraz ::= Izraz <op_oduzimanje> Izraz

Izraz ::= Izraz <op_mnozenje> Izraz

Izraz ::= Izraz <op_deljenje> Izraz

Izraz ::= <lz> Izraz <dz>

Izraz ::= <id> <op_dodela> Izraz

Izraz ::= <id>

Izraz ::= <celobrojna_konstanta>

Izraz ::= <realna_konstanta>

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa analize

Primer – sintaksna analiza (nastavak)

Primer

Pomoću ovih pravila, od datog niza tokena se može formirati sledeće stablo
izvodjenja:

Naredba

________/ ________

/ \

Izraz <tz>

_______/ | ____

/ | \

<id> <op_dodela> Izraz

_______/ | ________

/ | \

Izraz <op_deljenje> Izraz

______/ | _____ |

/ | \ |

Izraz <op_mnozenje> Izraz <realna_konstanta>

___/ | __ |

/ | \ |

<lz> Izraz <dz> <id>

___/ | _______

/ | \

Izraz <op_sabiranje> Izraz

| |

<id> <id>

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa analize

Primer – sintaksna analiza (nastavak)

Primer

Apstrahujući detalje konkretne sintakse, dobijamo sledeće stablo apstraktne sintakse:

<op_dodela>

__________/ _______

/ \

<id> <op_deljenje>

__________/ _______

/ \

<op_mnozenje> <realna_konstanta>

_____/ _______

/ \

<op_sabiranje> <id>

________/ _____

/ \

<id> <id>

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa analize

Primer – sintaksna analiza

Primer

Naredba:
if(x > y) max = x; else max = y;

je sintaksno ispravna konstrukcija u jeziku C. Sa druge strane:
if)x > y) max = x; else max = y;

nije sintaksno ispravna konstrukcija, jer se, po pravilima jezika, nakon
tokena <if> mora nalaziti token <lz> (leva zagrada), a ne token <dz>

(desna zagrada). Slično, deklaracija:
int x[] = {1, 2, 3};

je sintaksno ispravna u C-u, dok deklaracija:
int [] x = {1, 2, 3};

nije sintaksno ispravna u jeziku C, jer se po pravilima jezika u
deklaratoru specifikator dimenzije niza navodi iza promenljive (ili
nekog drugog složenog deklaratora), a ne ispred.

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa analize

Tabela simbola

Tabela simbola

U fazi leksičke analize apstrahovali smo konkrente lekseme i zamenili ih
tokenima
Ovo je zato što u fazi sintaksne analize nije bitno da li je
npr. identifikator x ili y , već je samo bitno da li identifikator može da
stoji na tom mestu
U fazi semantičke analize (a i kasnije, u etapi sinteze) biće nam veoma
bitno koji konkretan identifikator stoji na kom mestu
Zbog toga se te apstrahovane informacije ne odbacuju, već se čuvaju uz
svaki token i koriste se kasnije za pristup informacijama u tabeli simbola
Tabela simbola identifikatorima pridružuje informacije koje se odreduju u
fazi semantičke analize
Informacije koje se pridružuju identifikatorima u tabeli simbola su
npr. njihov tip i domet koji se odredjuje njihovom deklaracijom
Ove informacije se prosleduju dalje zadnjem delu prevodioca (etapa
sinteze)

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa analize

Primer – semantička analiza (nastavak)

Primer

Pretpostavimo u prethodnom primeru da su promenljive OsnovicaA, OsnovicaB i
Visina deklarisane kao int promenljive, a Povrsina kao double promenljiva. U fazi
semantičke analize će se prepoznati da operator deljenja ima operande različitog tipa, te
će se u stablo umetnuti operator konverzije int_u_double (implicitna konverzija):

<op_dodela>

__________/ _______

/ \

<id> <op_deljenje>

__________/ _______

/ \

<int_u_double> <realna_konstanta>

|

<op_mnozenje>

_____/ _______

/ \

<op_sabiranje> <id>

________/ _____

/ \

<id> <id>

NAPOMENA: Kod strogo tipiziranih jezika (poput Pascal-a), biće prijavljena semantička
greška.

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa analize

Uloge semantičkog analizatora

Šta sve radi semantički analizator?

Obradjuje naredbe deklaracija i informacije o tipovima promenljivih i funkcija smešta
u tabelu simbola
Utvrdjuje domete deklaracija, kao i prava pristupa u OOP jezicima (private,
protected, public)
Na osnovu prikupljenih informacija iz deklaracija proverava ispravnost upotrebe
identifikatora u različitim kontekstima
U programskim jezicima gde je to dozvoljeno, umeće implicitne konverzije gde je to
moguće
Odredjuje tipove složenih izraza
Proverava ispravnost funkcijskih poziva (s obzirom na tipove argumenata i tip
povratne vrednosti)
Proverava ispravnost upotrebe pojedinih naredbi u odredjenim kontekstima (poput
break i continue u C-u)
Proverava da li se tip izraza koji funkcija vraća (npr. naredbom return u C-u)
poklapa sa deklarisanim povratnim tipom i po potrebi umeće konverziju (ako jezik to
dozvoljava)
U jezicima koji to omogućavaju, vřsi dedukciju tipova identifikatora (npr. u C++-u,
Haskell-u itd.)
...

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa analize

Primer – semantička analiza

Primer

Pretpostavimo da u jezik C imamo izraz a+b pri čemu su promenljive a i b
strukturnog tipa. Ovaj izraz je sintaksno ispravan, ali je semantički neispravan, jer
strukture nije moguće sabirati u jeziku C.

Primer

Pretpostavimo da u jeziku C imamo naredbu x = 3;, pri čemu deklaracija
promenljive x nije u dometu (ili ne postoji). Naredba je sintaksno ispravna, ali je
semantički neispravna, jer se u C-u promenljive mogu koristiti samo u dometu
odgovarajuće deklaracije.

Primer

Pretpostavimo da u jeziku Java imamo naredbu c.x = 5;, gde je c instanca klase
MojaKlasa, a x njen privatni član tipa int. Ukoliko se naredba nalazi u metodi neke
druge klase, tada će biti prijavljena greška, iako je naredba sintaksno ispravna.

Primer

Pretpostavimo da u jeziku C imamo naredbu continue; koja se ne nalazi unutar
petlje. Iako je ovo sintaksno ispravna naredba (u skladu sa pravilima gramatike
jezika C), na tom mestu ona semantički nema smisla, te će semantički analizator
prijaviti grešku.

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa analize

Primer – semantička analiza

Primer

Naredba:
if(x == y) continue;

je sintaksno ispravna konstrukcija u jeziku C, iako ne mora biti i
semantički ispravna (jer se naredba continue ne može koristiti van
petlje). Sa druge strane, naredba:
if(x = y) x++;

je sintaksno (čak i semantički) ispravna konstrukcija u jeziku C,
iako obično nije ono što želimo.

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa sinteze

Etapa sinteze

Faze u etapi sinteze

Generisanje koda na medjujeziku

Ovaj jezik je blizak asembleru, ali je nezavisan od konkretnog hardvera i pogodan
je za optimizaciju
Tipično je u pitanju troadresni kod ili stek-zasnovani kod

Optimizacija koda

Evaluacija konstantnih izraza
Eliminacija neproduktivnog koda
Optimizacija petlji
Eliminacija skupih operacija
Eliminacija zajedničkih podizraza
Eliminacija repne rekurzije
...

Generisanje objektnog koda

Alokacija registara
Optimizacija zavisna od mašine

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa sinteze

Primer

Primer

Podsetimo se dobijenog stabla apstraktne sintakse u našem primeru:

<op_dodela>

__________/ _______

/ \

<id> <op_deljenje>

__________/ _______

/ \

<int_u_double> <realna_konstanta>

|

<op_mnozenje>

_____/ _______

/ \

<op_sabiranje> <id>

________/ _____

/ \

<id> <id>

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa sinteze

Primer (nastavak)

Primer

Na osnovu ovog stabla, polazeći od listova ka korenu, generǐsemo kôd na
medjujeziku poput sledećeg:

t1 := OsnovicaA INT_ADD OsnovicaB

t2 := t1 INT_MUL Visina

t3 := INT_TO_REAL t2

t4 := t3 REAL_DIV 2.0

Povrsina := t4

Tokenima <id> i <realna_konstanta> u listovima stabla pridružuju se
identifikatori i konstante koje im odgovaraju u tabeli simbola. Promenljive
t1, t2, t3, t4 su pomoćne promenljive koje odgovaraju vrednostima
unutrašnjih čvorova stabla. Svakom unutrašnjem čvoru odgovara jedna
operacija u medjukôdu. Izbor operacije zavisi od tipa vrednosti na koje se
primenjuje, što opet znamo na osnovu informacija prikupljenih u fazi
semantičke analize.

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Proces prevodjenja programa

Etapa sinteze

Primer (nastavak)

Primer

Nakon optimizacije, gornji medjukôd se prevodi u kôd na konkretnom asemblerskom
jeziku. U zavisnosti od arhitekture, svakoj naredbi medjukôda može odgovarati jedna
ili vǐse instrukcija asemblerskog jezika. Veoma bitan postupak ovde je alokacija
registara, kojima se promenljivama iz prethodnog kôda pridružuju registri. Cilj je da
što vǐse promenljivih budu u registrima, kako bi se smanjio broj pristupa memoriji.
Na x86-64 arhitekturi, gornji kod bi se mogao prevesti na sledeći način:

two: .double 2.0

mov eax, OsnovicaA

add eax, OsnovicaB

imul dword ptr Visina

cvtsi2sd xmm0, eax

divsd xmm0, two

movsd Povrsina, xmm0

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Interpretacija i kompilacija

Pregled

1 Uvod

2 Proces prevodjenja programa

3 Interpretacija i kompilacija

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Interpretacija i kompilacija

Interpretacija i kompilacija

Kompilacija

Prethodno opisani postupak se naziva kompilacija
Ulaz kompilatora (ili kompajlera) je program na izvornom jeziku (izvorni kôd)
Izlaz kompilatora je program na objektnom jeziku (objektni kôd)
Kompilator ne izvřsava program, već generǐse semantički ekvivalentan program
na drugom jeziku (prevod izvornog programa)

Interpretacija

Interpretacija podrazumeva izvřsavanje operacija koje u semantičkom smislu
odgovaraju naredbama datog programa na odredjenoj platformi
Ulaz interpretatora je program koji treba izvřsiti, kao i ulaz na koji taj program
treba primeniti
Izlaz interpretatora je izlaz programa za dati ulaz
Interpretator ne generǐse kôd na drugom jeziku, već samo tumači naredbe
izvornog programa i preduzima akcije kojima se simulira njihov efekat na datoj
platformi
Za razliku od kompilacije, interpretacija uključuje samo etapu analize, dok
etapa sinteze ne postoji

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Interpretacija i kompilacija

Interpretacija i kompilacija

Još o interpretaciji

Prethodna definicija interpretatora je veoma opšta i uključuje mnogo različitih stvari
Na primer, procesor se može smatrati (hardverskim) interpretatorom mašinskog
jezika
U tom slučaju, platforma na kojoj procesor izvřsava semantičke akcije koje
odgovaraju mašinskim instrukcijama je putanja podataka u njemu (engl. datapath)
U klasičnom smislu, (softverski) interpretator predstavlja program koji analizira
naredbe nekog drugog programa, tumači ih i izvřsava njihov efekat na datoj
hardverskoj arhitekturi
Interpretator implementira etapu analize izvornog programa, a nakon što se dobije
sintaksno stablo, umesto generisanja kôda izvřsava se efekat odgovarajuće
programske konstrukcije
Interpretator u tabeli simbola održava i vrednosti promenljivih koje se menjaju tokom
izvřsavanja naredbi programa
U našem primeru, interpretator bi, prateći stablo izraza
Povrsina = (OsnovicaA + OsnovicaB) * Visina / 2.0, a na osnovu
trenutnih vrednosti promenljivih u tabeli simbola, izračunao vrednost desne strane i
upisao je u tabelu simbola kao novu vrednost promenljive Povrsina

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Interpretacija i kompilacija

Interpretacija i kompilacija

Kompilacija

Primeri tipičnih kompilatorskih jezika su C, C++, Fortran, i sl.
Programi koji se kompiliraju prevode se na mašinski jezik, a onda se direktno
izvřsavaju na procesoru (potencijalno veliki broj puta)
Ponovno prevodjenje je neophodno samo ako se nešto menja u izvornom programu
Kompilirani programi su obično znatno brži od interpretiranih
Nedostatak je često manjak fleksibilnosti (npr. kompilatorski jezici su obično statički
tipizirani)

Interpretacija

Primeri tipičnih interpretatorskih jezika su Perl, PHP, Python, JavaScript, i sl.
Interpretacija je drastično sporija od direktnog izvřsavanja prevedenog kôda
(program se svaki put iznova analizira)
Interpretatorski programski jezici su često fleksibilniji i jednostavniji za programiranje
Zbog toga su naročito pogodni za brzo rešavanje rutinskih zadataka
Usled napretka interpretatora, u novije vreme interpretatorski jezici se koriste i kod
obimnijih softverskih projekata
Ipak, ograničeni su na primene kod kojih brzina nije tako bitna

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Interpretacija i kompilacija

Interpretacija i kompilacija

Hibridni pristup

Postoje i jezici kod kojih se koristi hibridni pristup:

program se sa izvornog jezika prevodi na neki medjujezik i generǐse
se odgovarajući medjukôd koji se čuva na disku
posebnim interpretatorom se vřsi interpretacija tog medjukôda kad
god se pokrene program

Tipični primeri ovakvih jezika su Java i C#:

Java programi se prevode na medjukôd koji se naziva još i Java
bajtkod
Java virtuelna mašina (JVM) se koristi da se prilikom pokretanja
dobijenog programa interpetira bajtkod na procesoru računara
Slično, C# programi se prevode na jezik poznat kao CIL (Common
Intermediate Language).
Interpretator CIL jezika koji je deo .NET okruženja intepretira
ovako dobijene programe i izvřsava ih na procesoru računara

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Interpretacija i kompilacija

Interpretacija i kompilacija

Hibridni pristup

Čak i klasični interpretatorski jezici (poput Python-a, PHP-a, Perl-a ili
JavaScript-a) danas uglavnom koriste kombinaciju interpretacije i
kompilacije:

kôd se interno prevodi na neki medjujezik koji se zatim interpretira

Ovakve tehnike omogućavaju bržu kompilaciju, veći stepen optimizacije
kôda i pobolǰsavaju efikasnost interpretacije

Kompilacija na licu mesta

Tokom interpretacije, često korǐsćeni delovi kôda se prevode na mašinski
jezik i izvřsavaju se direktno na procesoru
Ovakav pristup je poznat kao kompilacija na licu mesta (engl. just-in-time
(JIT)).
Najčeśće se primenjuje prilikom interpretacije medjujezika.

Prevodjenje programskih jezika – beleške sa predavanja Uvod

Interpretacija i kompilacija

Zaključak

Čime se mi bavimo?

U okviru ovog kursa detaljno se obradjuju faze analize koda

Znanje stečeno na ovom predmetu je, stoga, dovoljno da se
konstruǐsu jednostavni interpretatori

Etapa sinteze se ne obradjuje u okviru ovog predmeta

Otuda, na ovom predmetu nećete naučiti da konstruǐsete
kompilatore

Predmet Konstrukcija kompilatora se dataljnije bavi etapom
sinteze

	Uvod
	Motivacija
	Sadržaj predmeta
	Obaveze studenata

	Proces prevodjenja programa
	O jezicima uopšte
	Opšta struktura prevodioca
	Etapa analize
	Etapa sinteze

	Interpretacija i kompilacija

